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ABSTRACT
Most multivariate outlier detection procedures ignore the spatial dependency of observations, which is
present in many real datasets from various application areas. This article introduces a new outlier detection
method that accounts for a (continuously) varying covariance structure, depending on the spatial neighbor-
hood of the observations. The underlying estimator thus constitutes a compromise between a unified global
covariance estimation, and local covariances estimated for individual neighborhoods. Theoretical properties
of the estimator are presented, in particular related to robustness properties, and an efficient algorithm for its
computation is introduced. The performance of the method is evaluated and compared based on simulated
data and for a dataset recorded from Austrian weather stations. Supplemental materials to the article are
available online.
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1. Introduction

The identification of multivariate outliers is probably one of the
most important tasks in multivariate data analysis. A need to
find outliers in order to make further analyses more reliable, or
the direct interest in the outliers themselves motivate the numer-
ous approaches available for multivariate outlier detection. The
identified outliers are supposed to deviate to a certain extent
from the main trend or structure of the data majority, and thus
they are also called “global outliers” (Filzmoser, Ruiz-Gazen,
and Thomas-Agnan 2013). In contrast, the term “local outliers”
refers to a setting where additional information regarding some
kind of neighborhood is available, for example provided by
spatial coordinates of the observations. Then, local outliers are
observations which clearly differ from the multivariate measure-
ments of their spatial neighbors indicating local anomalies that
spark interest and make further analysis essential. Nevertheless,
the values themselves might still be in an ordinary range of the
dataset, and thus, the observation would not be outlying in a
global sense.

Existing statistical approaches for multivariate local outlier
detection are often based on a distance measure and neighbor-
hood structure. A neighborhood a is defined as a subset of the set
of observation indexes, say {1, . . . , n}. A p-variate observation xi,
for i ∈ {1, . . . , n}, is defined to be in neighborhood a if and only
if i ∈ a. The decision if some observation x is in a neighborhood
is typically based on its spatial coordinates s(x). One way to
construct the spatial neighborhood is to take a spatial k-nearest-
neighborhood of each point x, where k ∈ N. For a fixed x, the
spatial distance to another point y is defined as the Euclidean
distance

dx(y) = ∣∣∣∣s(x) − s(y)
∣∣∣∣ =

[(
s(x) − s(y)

)′ (s(x) − s(y)
)]1/2

.
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A spatial neighborhood ak(x) can then be defined as the set of
the k many spatial nearest observations,

ak(x) = {xj : dx(xj) ≤ dx(k)}, (1)

where dx(1) ≤ dx(2) ≤ · · · ≤ dx(k) ≤ dx(n) are the sorted
distances to all observations xi, i = 1, . . . , n. Regarding local
outlier detection, a distance measure often used to evaluate
outlyingness is the pairwise Mahalanobis distance (MD). For a
neighborhood a with covariance �a and an observation xi in
neighborhood a, the pairwise MD is defined as

MD�a(xi, xj) = [
(xi − xj)

′�−1
a (xi − xj)

]1/2 for all j ∈ a.

In general, the MD describes the distance between two obser-
vations, where the Euclidean distance in the feature space is
adapted according to local distribution properties.

The estimation method used to determine �a for all neigh-
borhoods is key to good and reliable results. It is essential
that outlying observations themselves are not affecting the esti-
mation, since this could possibly mask outliers, leaving them
undetected. Thus, a robust covariance estimation on the neigh-
borhood level is necessary. One of the most widely used robust
estimators for the covariance is the Minimum Covariance Deter-
minant (MCD) estimator (Rousseeuw 1984, 1985), where one
has to identify the h sub-sample of observations (where h is fixed
e.g., to half of the observations) that minimize the determinant
of its sample covariance. The MCD covariance estimator is then
given by the sample covariance of the h subset, multiplied by a
consistency factor (Croux and Haesbroeck 1999). For its com-
putation, the fastMCD algorithm developed by Rousseeuw and
Driessen (1999) introduces an iterative concentration step, so-
called C-step, that guarantees a decrease of the objective func-
tion until convergence to a (local) minimum, making the MCD
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estimator faster and even more popular. The global minimum is
then approximated by iterating for a number of random starting
values and choosing the smallest local minimum. By selecting
a small number of good deterministic starting values for the
fastMCD, the detMCD algorithm from Hubert, Rousseeuw, and
Verdonck (2012) improves run-time even more. In spite of these
excellent features of the MCD estimator, as well as affine equiv-
ariance and high robustness, one drawback is that the concept
is not applicable in case of singularity of the sample covariance
matrix of the h subset, which can easily occur. As for many
methods, regularity of the estimated covariance is also needed
to compute Mahalanobis distances. Especially in a setting where
we are restricted to local neighborhoods consisting of a possibly
small subset of observations, we might have a situation where
regularity cannot be achieved and thus an inversion of the local
covariance matrix is not possible. One solution is to base the
local estimation on regularized robust covariance estimators,
such as the recently developed Minimum Regularized Covari-
ance Determinant (MRCD) estimator from Boudt et al. (2020)
(or also on the Fritsch estimator, Fritsch et al. 2012). One of the
many attractive properties of the MRCD is that a slightly adapted
fastMCD algorithm based on C-steps is also applicable.

Existing methods for local outlier detection have different
ways to define the covariance matrix in order to ensure
regularity. The method of Filzmoser, Ruiz-Gazen, and Thomas-
Agnan (2013) is dealing with regularity issues by using the MCD
estimator calculated on the whole dataset, that is, �a = �, thus,
imposing a global covariance structure. They have shown that
for iid Gaussian random vectors x1, . . . , xn with mean μ and
covariance matrix �, the conditional distribution of the pairwise
squared MD�(xi, xj), for j = 1, . . . , n, given xi, is a noncentral
Chi-square distribution with p degrees of freedom and non-
centrality parameter MD2

�(xi, μ). Instead of a fixed cut-off value
for the pairwise MD, different sophisticated visual approaches
are used. By plotting a degree of isolation based on the pairwise
MD and quantiles of the noncentral Chi-square distribution,
suspicious and highly isolated observations can be discovered
and analyzed in more detail. Quite contrary to Filzmoser, Ruiz-
Gazen, and Thomas-Agnan (2013), the method of Ernst and
Haesbroeck (2016) uses a very local covariance estimation by
taking individual k-nearest-neighbor (kNN) neighborhoods
for each point separately into account. To tackle the regularity
issues, they use a regularized covariance estimation (originally
the estimator from Fritsch et al. (2012), for the MRCD see also
the adaptation made in Bellino et al. 2019) for each individual
kNN neighborhood. Additionally, they introduce the concept
of the “next distance”, which is also MD based, and use the
upper fence of the adjusted boxplot of Hubert and Vandervieren
(2008) of all next distances as a nonparametric cut-off value for
detecting outliers.

Since it is not necessary to use a MD concept to find local
outliers, a short detour to machine learning techniques might be
interesting. One of the most prominent approaches for detecting
multivariate local outliers in machine learning is the local outlier
factor (LOF) developed by Breunig et al. (2000). Initially, locality
refers to multivariate values and Euclidean distances in the
feature space but this method can also be canonically adapted to
spatial local outlier detection. In Schubert, Zimek, and Kriegel
(2012) this adaptation and further LOF-based approaches are

discussed. Interestingly, also LOF and its variants are based on a
concept of distance and neighborhoods.

The existing methods have shortcomings in various ways that
have not yet been properly addressed. The rather global nature
of the method of Filzmoser, Ruiz-Gazen, and Thomas-Agnan
(2013) leads to a reliable and robust estimation of the covari-
ance. Nevertheless, it is somewhat questionable if the estimated
covariance is applicable and representative for the covariance
structure on the local level. Trying to solve this issue of missing
locality in the estimation, Ernst and Haesbroeck (2016) resort to
a very local approach by recalculating the covariance matrix for
each observation separately. Although more locality is achieved,
the method is not taking into account that covariance matrices
are not likely to change abruptly from one neighborhood to a
next one. Also, the number of estimated parameters is extremely
high and based on rather few observations, even if the local
covariance structure is abruptly changing. A more global estima-
tion of the local covariance matrices might be more stable and
reliable and might also avoid repetitive calculations. It seems that
until now there are only two extremes regarding locality of the
covariance estimation available.

We bridge the gap between the fully global and the fully
local approach by providing a covariance estimator based on
the MRCD that addresses the missing locality on the one hand
and the missing spatial smoothness on the other. By providing
the possibility to set the amount of spatial smoothing and the
size of the neighborhoods we get a generalization of the two
detection methods, with the goal that good outlier detection
properties based on the new local covariance estimations are
achieved. Moreover, the covariance estimate can be seen as a
generalization of the MRCD when the dataset has additional
sub-structures.

The article is organized as follows. In Section 2 we introduce
the new covariance estimator, derive its properties as well as
properties of the original MRCD and establish the methodology
to detect local outliers. An algorithm and the derivation of a
generalized C-step are discussed in Section 3. Section 4 provides
simulation results regarding run time, convergence and outlier
detection, while in Section 5, a real dataset is analyzed using
the newly developed local outlier detection method. Finally, the
main results are presented and summarized in the conclusions.

2. Methodology

2.1. Spatially Smoothed MRCD Estimators

Assume that the p-dimensional observations xi = (xi1, . . . , xip)′,
for i = 1, . . . , n, are arranged as rows in the n × p matrix X with
n > 2p. Furthermore, each observation has spatial information
available, for example spatial coordinates, and is assigned to one
of N many neighborhoods, defined by the index sets a1, . . . , aN
of size n1, . . . , nN .

The goal of the proposed method is to obtain local covariance
estimates for each neighborhood that are suitable for calculating
the pairwise MDs and to some extent smooth among nearby
neighborhoods. Since the MCD estimator requires at least n >

2p to provide a regular covariance matrix, which is a severe
limitation especially for small neighborhoods, we focus on its
regularized extension, the MRCD estimator. Instead of mini-
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mizing the determinant of the sample covariance matrix as in
the MCD case, the minimization objective is the determinant
of a convex combination of the sample covariance and a sym-
metric and positive definite matrix, the so-called target matrix
T. Boudt et al. (2020) suggest a data-driven approach based on
the condition number of the covariance matrix to set the degree
of regularization ρ which is used in the convex combination.
Regarding the target matrix T, it is sensible to choose a robust
and regular covariance, for example, a diagonal matrix based on
univariate robust scale estimates.

In the following, we adapt the idea of the MRCD estimator to
our setting of local and smooth covariance estimation. Let H =
(H1, . . . , HN) be subsets of the index sets a1, . . . , aN defining the
neighborhoods. The size of each subset Hi is hi = |Hi| = �αni�,
for i = 1, . . . , N, where α is selected in the interval [0.5, 1],
and �·� is the ceiling function, rounding up to the next integer.
A smaller value of α will result in more robustness against
outliers, and it would also be possible to adjust this value to
each neighborhood individually. The observations of subset Hi
are written as matrix XHi , with dimensionality hi × p. Let the
neighborhood specific MRCD-based covariance matrix K i(H),
for i = 1, . . . , N, be defined as

K i(H) = ρiT + (1 − ρi)cαcov(XHi), (2)

with cov(Y) being the sample covariance matrix of Y , and cα

a consistency factor for the proportion α (see Croux and Haes-
broeck 1999). The regularization parameter ρi is set individually
for each neighborhood, and it could also be chosen as zero if the
estimated covariance matrix is already invertible. Finally, since
we want to smooth the covariance matrices, it seems counter
intuitive to choose neighborhood specific target matrices, which
would also require more parameter estimations. Therefore, we
assume a global target matrix T, taken as a robust and regular
covariance matrix estimated based on the full dataset X. Since
we assume n > 2p we propose to use the MCD estimator for X
as target matrix.

We want to find the combination of subsets in H that mini-
mizes the objective function

f (H) =
N∑

i=1
det

⎛
⎝(1 − λ)K i(H) + λ

N∑
j=1,j �=i

ωijK j(H)

⎞
⎠ . (3)

The tuning parameter λ ∈ [0, 1] is used to balance the influence
of an individual local neighborhood and the remaining neigh-
borhoods in the covariance estimations. In case of λ = 0, there
is no spatial influence at all which is equivalent to the estimation
of the MRCD for each neighborhood separately while using a
global target matrix. For the other extreme λ = 1, the covari-
ance matrix in a specific neighborhood is an average over the
surrounding covariance estimates without adding local infor-
mation from the neighborhood itself. Moreover, it is possible to
interpret the second part in the determinant as a penalization
term. Due to the minimization of the determinant, observations
from ai that match well with the main trend of observations
in neighborhoods with positive weights ωij are more likely to
be in the optimal H-set if λ is increased. The weights ωij are
supposed to be nonnegative, and we set ωii = 0. The elements
of the weight vector ωi = (ωi1, . . . , ωiN)′ indicate the relative

influence that the estimated covariances of other neighborhoods
have on the covariance estimation of the ith neighborhood. Also,
each weight vector has to sum up to one,

∑N
j=1 ωij = 1 for

all i = 1, . . . , N. All these weights need to be pre-specified,
for example based on inverse geographical distances, and are
collected as rows in the weighting matrix W ∈ R

N×N .
Note that for the objective function (3) a global minimum

H∗ = (H∗
i )i=1,...,N exists since its domain consists of a finite

number of subset combinations. For this global minimum, the
estimated covariance matrix for each neighborhood ai is

�̂SSM,i = (1 − λ)K i(H∗) + λ

N∑
j=1,j �=i

ωijK j(H∗), (4)

and the location estimate μ̂SSM,i is the sample mean of the
selected observations XH∗

i
. We call these estimators the spatially

smoothed MRCD (ssMRCD) location and covariance estima-
tors.

Although the neighborhood structure and the value of λ will
often depend on the data at hand, there are some sensible and
natural choices for W. If we have a neighborhood structure
that has no further meaning and might just be used to divide
the spatial space into subsets, an inverse-distance based weight
matrix, also used in Sections 4 and 5, might be a good choice.
Other possibilities include binary matrices with ones if neigh-
borhoods share a border and zero otherwise, with rows scaled
appropriately. Moreover, the regularity parameters can be set by
default. For a neighborhood ai we suggest to set the regulariza-
tion parameter ρi as the data driven value that is proposed by the
MRCD algorithm in Boudt et al. (2020), when interpreting the
neighborhood as its own dataset.

2.2. Theoretical Properties

In the following we will show that the spatially smoothed MRCD
estimators proposed here are—in contrast to the original MRCD
estimator—affine equivariant, and we derive its breakdown
point. For a dataset X ∈ R

n×p, a location and covariance
estimator are called affine equivariant for all neighborhoods
if for any nonsingular matrix A ∈ R

p×p, any vector b ∈ R
p, and

all i = 1, 2, . . . , N, it holds that

μ̂SSM,i(XA′ + 1nb′) = μ̂SSM,i(X)A′ + b′, (5)

�̂SSM,i(XA′ + 1nb′) = A�̂SSM,i(X)A′.

Theorem 1 (Affine equivariance). Let T be any robust, regular
and affine equivariant estimate of the covariance for the dataset
X, here denoted as T(X). Then, the spatially smoothed MRCD
estimators of location and covariance with target matrix T(X)

are affine equivariant.

Proof. The proof is given in the supplement.

The assumptions of Theorem 1 for T(X) can be fulfilled by
the MCD applied to the full dataset X for n > 2p. Nevertheless,
any robust estimator satisfying the assumptions can be used,
for example, S-estimators (Rousseeuw and Leroy 1987). Note
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that for local outlier detection tasks we typically have enough
observations globally to get regularity with standard robust esti-
mators. As a remedy if regularity is not achievable, the MRCD
(or e.g., the OGK estimator of Maronna and Zamar 2002) can
be used. Assuming that the target matrix can be estimated
in a robust, regular and affine equivariant way representing a
covariance, the MRCD would also be affine equivariant. How-
ever, this might question the usefulness of the MRCD since we
already have a robust, regular and affine equivariant covariance
estimator available, namely T(X). Therefore, in typical applica-
tion scenarios, the ssMRCD is affine equivariant whereas the
original MRCD is not. Anyhow, in the case of global high-
dimensionality, that is n ≤ p+1, affine equivariance can only be
achieved by the non-robust sample mean and covariance (Tyler
2010). Neither the MRCD nor the ssMRCD can then be affine
equivariant.

Another important property of robust estimators is the finite
sample breakdown point, which is defined as the minimal frac-
tion of points that need to be exchanged in order to make the
estimators useless. Before considering the spatially smoothed
MRCD we have to derive the breakdown point of the original
MRCD without prior scaling of the observations, from now on
called raw MRCD. The breakdown point of a location estimator
μ̂n is formally defined as

ε∗
n(μ̂n; Xn) = 1

n
min{m : sup ||μ̂n(Xn,m) − μ̂n(Xn)|| = +∞},

where Xn,m is the data matrix Xn with m-many observations
exchanged with arbitrary values (Maronna, Martin, and Yohai
2006).

For the covariance estimate �̂n the finite sample breakdown
point is defined as

ε∗
n(�̂n; Xn) = 1

n
min{m : sup max

j
| ln(λj(�̂n(Xn,m)))

− ln(λj(�̂n(Xn)))| = +∞},

with λ1(�), . . . , λp(�) denoting the eigenvalues of a matrix �

in decreasing order. Since the eigenvalues are sorted, we only
have to consider the biggest eigenvalue λ1(�̂n(Xn,m))) which
might explode when exchanging observations with arbitrary
values (explosion breakdown point) and the smallest eigenvalue
λp(�̂n(Xn,m))) which might become zero (implosion breakdown
point) and thus implies singularity (Maronna, Martin, and Yohai
2006).

Theorem 2. Consider the raw MRCD estimator with fixed ρ >

0, regular and fixed T = Q�Q′ and the data matrix Xn. Then,
the following statements hold:

a. The MRCD location estimator μ̂n has the finite sample break-
down point min(h, n − h + 1)/n.

b. The MRCD covariance estimator �̂n has the finite sample
explosion breakdown point (n − h + 1)/n.

c. The MRCD covariance estimator �̂n has the finite sample
implosion breakdown point 1.

Proof. The proof is given in the supplement.

Regarding the finite sample breakdown point of location
and covariance estimators with multiple estimators let us define
the finite sample breakdown point ε∗

n as the minimal fraction
of points of the same arbitrary neighborhood that need to be
exchanged in order to make at least one of the estimators useless.
For the location estimators μ̂SSM,n,i, i = 1, . . . , N, the formal
definition is

ε∗
n(

(
μ̂SSM,n,i

)N
i=1 ; Xn) = min

i=1,...,N

1
ni

min{m : sup ||μ̂SSM,n,i(Xi
n,m)−μ̂SSM,n,i(Xn)|| = +∞},

where Xi
n,m is the matrix Xn with m-many observations of

neighborhood ai exchanged with arbitrary values.
For the breakdown points of the ssMRCD estimator, we

restrict the values of the parameters W and λ to exclude the
following special case. In general it is possible that all entries
of one column of the weight matrix are zero for (at least) one
neighborhood ai (ωij = 0 for all j = 1, . . . , N) meaning that
neighborhood ai does not contribute to spatial smoothing for
any other neighborhood. If additionally λ = 1, the observations
and the MRCD-based covariance matrix of neighborhood ai
(see (2)) do also not contribute to the estimation of the ssMRCD-
covariance estimate of neighborhood ai itself. Thus, the values of
the observations in neighborhood ai do not affect the estimation
in any way implying that it is not sensible to include this neigh-
borhood in the calculation of the breakdown point. Therefore,
in the following theorems of this section we assume that there is
at least one nonzero entry per column of W if λ = 1.

Theorem 3. The location estimators
(
μ̂SSM,n,i

)N
i=1 of the spatially

smoothed MRCD have the finite sample breakdown point

ε∗
n(

(
μ̂SSM,n,i

)N
i=1 ; Xn) = min

i=1,...,N
min(ni − hi + 1, hi)/ni.

Proof. The proof is given in the supplement.

For the covariance estimates �̂SSM,n,i, i = 1, . . . , N, the finite
sample breakdown point is defined accordingly,

ε∗
n(

(
�̂SSM,n,i

)N

i=1
; Xn) = min

i=1,...,N

1
ni

min{m : sup max
j

| ln(λj

(�̂SSM,n,i(Xi
n,m))) − ln(λj(�̂SSM,n,i(Xn)))| = +∞}.

Again, we can differentiate between explosion and implosion
breakdown point.

Theorem 4. Given a fixed and regular target matrix T, the finite
sample implosion breakdown point of the spatially smoothed

MRCD covariance estimators
(
�̂SSM,n,i

)N

i=1
is equal to

ε∗
n(

(
�̂SSM,n,i

)N

i=1
; Xn) = 1.

The finite sample explosion breakdown point is

ε∗
n(

(
�̂SSM,n,i

)N

i=1
; Xn) = min

i=1,...,N
(ni − hi + 1)/ni.

Proof. The proof is given in the supplement.
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Note that for all the breakdown properties of the original and
the spatially smoothed MRCD, the target matrix T is assumed to
be regular and fixed. In applications the target matrix would be
some covariance estimator T(X) with its own breakdown point.
Then, the explosion breakdown point of the ssMRCD with
estimated target matrix is the minimum of the two breakdown
points, and the implosion breakdown point is 1 (see online
appendix, after proof of Theorem 4).

2.3. Local Outlier Detection

The final step for detecting outliers is to decide how the spa-
tially smoothed covariances available for neighborhoods ai, i =
1, . . . , N, will be linked to the pairwise MD.

The method is based on Ernst and Haesbroeck (2016). In
order to compare each observation x with its local neighbors we
need a second neighborhood structure that provides spatially
close neighbors in contrast to the structural neighborhoods ai
that are used for the smoothed covariance estimation. Thus, we
select some k ∈ N and calculate the spatial k nearest neighbors,
bk(x), see also Definition (1), where a typical value might be k =
10. However, when applying the method, the spatial structure of
the dataset should also be considered.

For each observation x ∈ ai, the next distance is defined as

d(x) = miny∈bk(x)

[
(x − y)′�̂−1

SSM,i(x − y)
]1/2

,

which is the minimum of all pairwise MDs based on the covari-
ance matrix �̂SSM,i with all observations in the spatial k nearest
neighborhood bk(x). The neighborhood bk(x) is not necessarily
a subset of ai. However, due to the spatial smoothing of the
covariance matrices and the spatial correlation of regular obser-
vations, an observation y spatially close to x should be similar
enough to not be classified as outlier even if the covariance
matrix of another but close neighborhood ai is used. In the case
of a strong difference between x and y, the observation y would
still be classified as outlying.

The next distance d(x) is used as a measure of outlyingness.
If the next distance is high, none of the observations in the
spatial k nearest neighborhood is similar to the observation x,
which means that x would be flagged as a local outlier. As a
notion what values for the next distance are considered as high,
a nonparametric cut-off value can be used based on the upper
fence of the adjusted boxplot (Hubert and Vandervieren 2008)
using all next distances from all neighborhoods ai, i = 1, . . . , N.
Observations above the cut-off value are considered to be local
outliers.

Possible further extensions like the restriction to homoge-
neous neighborhoods as suggested in Ernst and Haesbroeck
(2016) are not included but are interest of future research.

3. Algorithm and C-step

For computing the spatially smoothed MRCD location and
covariance estimators we need to minimize the objective func-
tion (3). However, since the number of possible combinations
of subsets is comparable with the MCD or the MRCD, it is in
general not feasible to just calculate the value of the objective
function for all these combinations and select the best one.

Instead, the strategy of C-steps (concentration steps) introduced
for the MCD estimator by Rousseeuw and Driessen (1999)
will be adapted to this problem setting. Given an index set H1
corresponding to h observations of the data matrix X, the C-step
chooses the subsequent subset H2 where the h observations with
the smallest Mahalanobis distances, based on the arithmetic
mean and sample covariance matrix of the observations from
H1, are taken. Rousseeuw and Driessen (1999) have shown that
this procedure converges to a local minimum. The C-step idea
has also been extended for the MRCD (Boudt et al. 2020), and
we will now adapt the generalized C-step to our setting.

Theorem 5. For each j = 1, . . . , N, let ρj ∈ (0, 1) and H0
j be any

starting subset of aj of respective size hj ∈ (nj/2, nj). Let αj be
the corresponding fraction of the observations used, αj = hj/nj.
Let H0 = (H0

1 , . . . , H0
N) be the combination of the subsets

and λ ∈ [0, 1) fixed. The target matrix T(X) is assumed to be
positive definite, symmetric and fixed, and K j(H0) is defined
as in (2) with T = T(X). Calculate the sample mean for each
neighborhood aj, j = 1, . . . , N, based on the respective subset,
mj(H0) = 1

hj

∑
k∈H0

j
xk.

Fix neighborhood ai. For x ∈ ai, let the MD-based measure
with the subset given by H0 be defined as

d(x;H0) = (x − mi(H0))′

×
⎡
⎣(1 − λ)K i(H0) + λ

N∑
j=1,j �=i

ωijK j(H0)

⎤
⎦

−1

× (x − mi(H0)).

For a new subset H1
i of ai of size hi with

∑
k∈H1

i

d(xk;H0) ≤
∑

k∈H0
i

d(xk;H0),

denote H̃ = (H0
1 , . . . , H1

i , . . . , H0
N) (note that K j(H̃) = K j(H0)

for j �= i). Then,

det

⎛
⎝(1 − λ)K i(H̃) + λ

N∑
j=1,j �=i

ωijK j(H̃)

⎞
⎠

≤ det

⎛
⎝(1 − λ)K i(H0) + λ

N∑
j=1,j �=i

ωijK j(H0)

⎞
⎠

with equality if and only if K i(H̃) = K i(H0) and mi(H̃) =
mi(H0).

Proof. The proof is given in the supplement.

The C-step theorem states that the objective function will
decrease with every step as long as the other covariance estima-
tors stay fixed. In the implemented algorithm described below,
this will in general not be the case. However, the theorem and its
proof should be sufficient to motivate and provide a reason for
the algorithm proposed in the following.

The algorithm makes use of the C-step to solve the minimiza-
tion problem based on Boudt et al. (2020). Suppose that we can
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estimate the target matrix T = T(X) by the affine equivariant
MCD estimator, then we also obtain affine equivariance for the
spatially smoothed MRCD. Thus, we can ignore the scaling step
in Boudt et al. (2020) and reduce the number of parameter
estimations. Using an eigen-decomposition of T = Q�Q′,
with Q containing the eigenvectors as columns, and � being
the diagonal matrix of positive eigenvalues, we transform the
observations,

zi = �−1/2Q′xi, (6)

for i = 1, . . . , n. Thus, in the next steps we can use Z =
(z1, . . . , zn)′ as data matrix and T = Ip as target matrix, which
numerically simplifies the data-driven selection procedure for
ρj.

In order to start the iteration process by making use of the C-
steps, we need starting values, which should be robust and regu-
lar covariance estimates for each neighborhood. As proposed for
the original MRCD estimator, we will also use the deterministic
MCD algorithm of Hubert, Rousseeuw, and Verdonck (2012)
for each neighborhood separately. This approach results in six
estimates for location and scatter for each neighborhood, which
show especially good convergence properties. Furthermore, for
each neighborhood aj, the value of ρj is calculated using the
data-driven selection procedure based on a maximal condition
number according to steps 3.2 to 3.4 from Boudt et al. (2020).
The set of six deterministic starting values for each neighbor-
hood is restricted to those with a sufficiently small condition
number (for more details see step 3.5. in Boudt et al. 2020).

One new issue that arises is the number of possible combi-
nations of initial subsets: for N neighborhoods we end up with
up to 6N subset combinations as possible starting values. Since a
high number of starting values might not be essential for a good
approximation, we will consider an upper limit of 6N starting
values in the following, and they will be selected at random out
of the possible combinations that are left after the ρ-selection
step. While accuracy can be increased with additional starting
values, the restriction to 6N leads to computational feasibility
for the algorithm and still provides reliable estimates as can be
seen in the performance of local outlier detection in Section 4.

Suppose now that we start the procedure with an initial
subset H0 = (H0

1 , . . . , H0
N), then we apply the C-step for each

neighborhood ai and obtain a new subset Hi
1. The combination

of these subsets H1 = (H1
1 , . . . , H1

N) is used as starting point
for the next iteration step, etc. After there is no change in the
subsets, the iteration process stops (see also Figure 8 in the
online supplements). After applying the C-step iterations for
all starting values, we choose the subset combination with the
smallest objective function value as the final subset combination
H∗ = (H∗

1 , . . . , H∗
N).

Although Theorem 5 is not proving that the objective func-
tion decreases with every step due to the additional covariance
matrices being adapted separately for each neighborhood after
each iteration step, simulation results show that the algorithm
provides stable results and good monotonic behavior in most
cases (see Section 4).

After receiving the final combination of subsets H∗ for each
neighborhood, the matrices KZ

i are back-transformed to

K∗
i = Q�1/2 [

KZ
i (H∗)

]
�1/2Q′. (7)

Algorithm 1: Algorithm for the spatially smoothed
MRCD estimator.
1 Step 1.1: Calculation of target matrix T using the MCD

estimator on X;
2 Step 1.2: Eigen-decomposition of T = Q�Q′ and

transform observations according to (6);
3 Step 2: Initialization step according to steps 3.1 to 3.5

(without C-step) from Boudt et al. (2020) for each
neighborhood;

4 for i = 1, . . . , N do
5 Fix neighborhood ai;
6 Get 6 initial deterministic sets of hi observations

from ai according to Hubert, Rousseeuw, and
Verdonck (2012);

7 Calculate 6 initial covariance matrices and mean
estimates;

8 Select neighborhood specific ρi via data driven
approach;

9 Filter subset of initial starting estimates according to
condition number (step 3.5 from Boudt et al. 2020);

10 end
11 Select set of initial h-set combinations as starting values

at random;
12 Step 3.1: C-step: For each initial combination of subsets

iterate until convergence;
13 Step 3.2: Select best combination of subset based on

objective function value;
14 Step 4: Calculate K i(H∗) ∀i and use (7) and (8) to get

final estimates;

The covariance estimate for neighborhood ai is then

�̂SSM,i = (1 − λ)K∗
i + λ

N∑
j=1,j �=i

ωijK∗
j , (8)

and the location estimate is the arithmetic mean of the optimal
subset XH∗

i
. The detailed numerical procedure is summarized as

pseudo-code in Algorithm 1.
Regarding the tuning parameter λ there is no standard

procedure to get a good value that is similarly automated like
the calculation procedure for the regularization parameters
ρi. However, there are multiple possibilities demonstrated in
Section 5 that can be used to choose λ in applications.

4. Numerical Simulations

In order to test the new method, two simulation setups are con-
structed which also incorporate the neighborhood structures
necessary for the covariance estimation and outlier detection.
For both setups we simulate covariance matrices which depend
on a parameter δ, denoted by � (δ), where the entries are defined
as (� (δ))jk = δ(j−k), for j, k ∈ {1, . . . , p}, leading to positive
definiteness and symmetry.

Setup 1: The first setup is inspired by the original idea of
covariance matrices smoothly transforming over space. We start
by setting up the (two-dimensional) coordinates (s1

i , s2
i ) of the

observations xi with nsim = 41 observations per coordinate axis,
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Figure 1. Simulation scenarios with p = 2 and a 5% contamination rate. On the left hand side the simulation setup 1 is presented with contamination achieved through
the swapping process described in Ernst and Haesbroeck (2016), Nsim = 25 and nsim = 41. The values printed on the left-most panel are corresponding to the parameter
δlm . On the right hand side, setup 2 with ν = 3 is shown with completely random swapping.

evenly spread between 0 and 20, resulting in n = n2
sim = 1681

data points in total.
For Nsim many areas alm, l, m ∈ {1, . . . ,

√
Nsim}, of similar

observations we construct a second spatial grid with each cell
consisting of nsim/Nsim observations on average. The borders of
the areas for the first coordinate are defined as b1

l = l 20√
Nsim

for l = 0, . . . ,
√

Nsim. Analogously, the borders for the second
coordinate are defined as b2

m = m 20√
Nsim

for m = 0, . . . ,
√

Nsim,
leading the an evenly spaced grid. Thus, the area alm consists of
observations {xi : s1

i ∈ (b1
l−1, b1

l ]∩s2
i ∈ (b2

m−1, b2
m]} for l, m �= 0.

For either l or m equal to 1, the left edge of the interval (which
would be zero) is included. The coordinate centers of the area
alm are defined as c1

lm = b1
l−1+b1

l
2 and c2

lm = b2
m−1+b2

m
2 .

The observed values of observations in area alm are then
randomly drawn from a p-dimensional normal distribution
N

(
μlm, � (δlm)

)
, where μlm := ((c1

lm + c2
lm)/2, . . . , (c1

lm +
c2

lm)/2) ∈ R
p×1, thus, having entry values between 0 and 20. For

the covariance matrix � (δlm) for areas alm we use the structure
described above with parameter δlm defined as

δlm =
(

0.1 + l
0.9 − 0.1√

Nsim

) (
0.1 + m

0.9 − 0.1√
Nsim

)
∈ [0.01, 0.81],

increasing smoothly from the left bottom to the right upper
corner. A simulated dataset with p = 2 is presented in Figure 1
(left) where the grid structure and the change of the mean are
clearly visible. The resulting δlm for each area is shown as well.

Setup 2: To get a more flexible simulation setup, a random
field, specifically the parsimonious multivariate Matérn model
(see Gneiting, Kleiber, and Schlather 2010; Ernst and Haes-
broeck 2016), is used as suggested in Ernst and Haesbroeck
(2016) and Harris et al. (2013). Instead of the constructed matri-
ces used in Ernst and Haesbroeck (2016) and Harris et al. (2013)
we again choose a matrix structure � (δ) as described above
with δ = 0.7, since it can be extended for higher dimensions.
For δ being set to 0.7 we get a range of high to low correlations
reflecting different relationships between variables. The spatial
smoothness is assumed to be the same for all variables, and it is
regulated by one smoothness parameter ν, which is taking values
in {0.5, 1.5, 3}. A higher ν leads to more spatial smoothness and
in general more distinct outliers after contamination. The spatial

scale parameter a of the Matérn model is set to one. A grid
structure for the coordinates of the observations with values
ranging from 0 to 20 with grid size 0.5 is imposed, leading to
412 = 1681 observations overall, similar to the standard setting
in setup 1.

Lastly, contamination with outliers is achieved by swapping
coordinates of observations with each other. Filzmoser, Ruiz-
Gazen, and Thomas-Agnan (2013) exchange observations that
are completely randomly chosen, whereas Ernst and Haesbroeck
(2016) propose to swap the most extreme observations regard-
ing the first score of the global robust principal components.
In order to avoid the problem of exchanging whole areas of
observations with each other due to high spatial correlation,
once observations are swapped, their 15 closest neighbors are
removed from the swapping process. This leads to a clear dis-
tinction of outlying observations without the possibility of other
outliers being close (see also Figure 1). Thus, swapping accord-
ing to Ernst and Haesbroeck (2016) should in general result in a
better performance for all considered methods. Both swapping
approaches in both setups will be analyzed with a varying con-
tamination level β between 1% and 15%.

For the ssMRCD covariance estimation we impose a grid
based neighborhood structure. Similar to the description of
setup 1 we use evenly spaced borders and assign the observations
to neighborhoods ni, for i = 1, . . . , N. Thus, the case N = Nsim
in setup 1 depicts a perfect match of the neighborhoods selected
for the ssMRCD and the real underlying covariance structure.
For Nsim > N the ssMRCD uses less neighborhoods leading to
more smoothness of the covariance estimation. The weighting
matrix W is based on the inverse (Euclidean) distance of the
centers, that are defined equivalently to setup 1.

We will focus on the suitability of the ssMRCD covariances
for local outlier detection and refer to the online supplement
for additional analysis regarding computational efficiency and
convergence behavior of the algorithm described in Section 3.
We compare its performance to the local outlier detection meth-
ods of Filzmoser, Ruiz-Gazen, and Thomas-Agnan (2013) (F),
Ernst and Haesbroeck (2016)(EH) and the local outlier factor
methodology of Breunig et al. (2000), canonically adapted to
spatial neighborhoods as described in Schubert, Zimek, and
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Kriegel (2012) (LOF). Both simulation setups vary in the param-
eters p, ν and Nsim, respectively, and both swapping processes
are used, each combination is simulated 100 times. All methods
considered compare each observation to k many of its neigh-
boring observations which we will assume to be equal to 10 for
all methods. For the ssMRCD we will assume the default values
(λ = 0.5, N = 25, and W based on inverse-distances) arrived
from the parameter sensitivity analysis included in the online
supplement.

The outlier classification method of Filzmoser, Ruiz-Gazen,
and Thomas-Agnan (2013) has a parameter βF which is the
percentage of neighboring observations that a local outlier is
allowed to be similar to. Here we use the value βF = 0.1, as
proposed in Ernst and Haesbroeck (2016), meaning that 0.1k =
1 observation is allowed to be similar within the 10 nearest
neighbors. For inliers the expected value of the isolation degree
is βF . If the actual degree of isolation is higher than the expected
value, this signals local outlyingness. As cutoff for classifying
an observation as local outlier we use twice the value of βF , so
20%. This cutoff is less strict than in the simulation setup from
Ernst and Haesbroeck (2016) who take a cutoff of three times
the expected value, that is, 30%. Note that the methodology
of Filzmoser, Ruiz-Gazen, and Thomas-Agnan (2013) mostly
focuses on visual outlier detection tools, so the cutoff value
chosen here might not be optimal.

For the regularized spatial detection technique by Ernst and
Haesbroeck (2016), the parameter βEH , which gives the fraction
of the most homogeneous neighborhoods included in the outlier
detection procedure, is set to one. In the simulations we are inter-
ested in all outliers, and the heterogeneity in the simulated data
should be comparable for all of the observations. Thus, only con-
sidering a fraction leads to non comparable results. Moreover,
the simulation results of Ernst and Haesbroeck (2016) show that
over all considered setups, βEH = 1 is also optimal. As regular
covariance matrix estimator we use the MRCD with the default
target matrix (equi-correlated target matrix) and α = 75%.

Last but not least, the nonparametric LOF, which calculates a
local outlier factor for each observation based on a comparison
of the so-called “local reachability density” with its k-nearest
neighbors, needs a cutoff value. Since there is no fixed rule on
how to choose a cutoff value, a local outlier factor above 1.5
determines an outlier. This value is also used in the original
paper of Breunig et al. (2000).

The results for both simulation setups and the completely
random switching are shown in Figures 2 and 3. For the results
regarding the swapping method of Ernst and Haesbroeck (2016)
shown in Figures 13 and 14 as well as a comparison of the four
methods in terms of computational efficiency we refer to the
online supplement.

Starting with the false positive rate (FPR), we see that the
method of Ernst and Haesbroeck (2016) has some issues with
classifying too many normal observations as outliers in nearly all
settings. This is likely due to the very local covariance estimation
which might be too strict in general leading to a strong swamp-
ing effect, especially in settings where there is no strong spatial
correlation of the observed values. Interestingly, the behavior of
the FPR for the method of Filzmoser, Ruiz-Gazen, and Thomas-

Agnan (2013) depends on the data simulation setup. For the
moving matrix scenarios, the FPR is rather high, for random
fields it is very low. The LOF and the ssMRCD-based outlier
detection method have reliable low FPR for all scenarios.

The outcome for the false negative rate (FNR) is quite dif-
ferent. While for Ernst and Haesbroeck (2016) the FNR is in
many settings below all other methods, this might just be due
to the high FPR. The method of Filzmoser, Ruiz-Gazen, and
Thomas-Agnan (2013) has a very high FNR in most scenarios
even in those with a high FPR. Regarding LOF, the simulation
scenario has a strong effect on its performance. For the moving
matrix setup we see a rather good performance compared to
the other methods, while for random fields the FNR can hardly
keep up with the other methods except the method of Filzmoser,
Ruiz-Gazen, and Thomas-Agnan (2013). The ssMRCD method
is somewhere in between. Although the corresponding FNRs for
the moving matrix setup with completely random swapping are
not overwhelming, they are still in a reasonable range for the
switching method of Ernst and Haesbroeck (2016). Moreover,
the FNRs for the ssMRCD outlier detection technique in the
other scenarios are compellingly low.

Comparing the F1-scores of the different methods, the best
method to use in general depends on the scenario. While the
three selected methods seem to have pitfalls in at least one
simulation scenario, the ssMRCD-based method is consistently
showing reliable results and is mostly among the two best meth-
ods. Moreover, less extreme behavior occurs when it comes to
the FNR and the FPR. Thus, the ssMRCD-based local outlier
detection method could be the method of choice for standard
outlier detection tasks. However, note that with increasing con-
tamination it might become more beneficial to use a method
that is generally more prone to flag observations as outliers, for
example the technique of Ernst and Haesbroeck (2016), or to
adapt the parameters of the ssMRCD to allow for more locality.

5. Example

In this section we consider a dataset provided by GeoSphere
Austria (2022). It consists of monthly weather data for Austrian
weather stations and is used to test and compare the different
methods. The dataset contains measurements of air pressure
[hPa] (p), relative air humidity [%] (rel), the monthly sum of
sunshine duration [h] (s), wind velocity [m/s] (vv), air tempera-
ture in 2 meters above the ground [◦C] (t), and the average daily
sum of precipitation [mm] (rsum), averaged over all months in
2021, for n = 183 weather stations distributed all over Austria
(see also Figure 4 or 7). The coordinates used for all methods are
given in latitude and longitude.

We set k = 10 for all methods, that is, we want to compare
one observation with its ten closest neighbors, independent of
the methodology used. Although for the method of Ernst and
Haesbroeck (2016) it is possible to remove observations with
comparably high levels of heterogeneity among the neighbors,
we want to include all observations, thus, setting β = 1. Even
if there is increased heterogeneity among the neighbors, an
observation might still be an interesting outlier clearly visible
with the naked eye. Moreover, as mentioned in the prior section,
the simulation results in Ernst and Haesbroeck (2016) show the
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Figure 2. False positive and false negative rate for all four outlier detection methods with varying contamination levels achieved through completely random switching
for different scenarios. Each point represents the mean of 100 repetitions.

best performance for high β . For the methodology of Filzmoser,
Ruiz-Gazen, and Thomas-Agnan (2013) in accordance with the
simulation setup we allow for one of the ten neighbors to be
similar to the local outlier. The cutoff value is again set to 0.2. We
use the same cutoff value of 1.5 for the LOF as in the simulations.

For the ssMRCD local outlier detection method we use a grid
based neighborhood structure for the covariance estimation.
Due to the Alpine landscape especially in the Western parts
of Austria we aim at a rather local covariance structure, thus,
choosing a rather fine grid with N = 21 neighborhoods and
ni ≈ 8.7 observations per neighborhood on average. Other
possible options could be based on underlying structures, for
example, due to historical or political reasons, or on other classi-

fying methods like clustering of the spatial coordinates. Further-
more, we use inverse-distance weights for the weighting matrix
W between neighborhoods based on their center and select the
default smoothing degree of λ = 0.5 to gain enough smoothing
but still keep the locality of the fine grid structure.

As an alternative to using the default value of λ = 0.5
we can set up a simulation procedure. Assuming that the real
data is uncontaminated, we can swap observations similar to
the simulation studies in Section 4 and define them as local
outliers. We can apply the outlier detection technique with the
ssMRCD and different choices of λ (this can also be applied to
other parameter settings of the ssMRCD), and then analyze the
fraction of found outliers and the total number of outliers. Since
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Figure 3. F1-Score for all four outlier detection methods with varying contamination levels achieved through completely random switching for different scenarios. Each
point represents the mean of 100 repetitions.

Figure 4. On the left hand side, the contours of Austria and its districts are shown together with the imposed grid structure for the ssMRCD neighborhoods. Here, singular
points are assigned to a neighboring neighborhood. For each neighborhood ai the index i is placed at the center, and the tolerance ellipses of corresponding correlation
matrices based on the ssMRCD estimator are plotted along the first and second eigenvector coordinate of T, which can be seen in the upper left corner as reference. The
biplot of T is shown on the right hand side.

only focusing on the known FNR for the found outliers leads to
an increased false positive rate, it is sensible to also take the total
number of found outliers into account. A good value of λ is a
tradeoff between a low FNR and a comparatively low number of
found outliers overall. Interestingly, this procedure endorses the
choice of λ = 0.5 in this dataset.

The resulting ssMRCD correlation matrices for each neigh-
borhood can be seen in Figure 4. The observations and the toler-
ance ellipses of the ssMRCD correlation matrices are colorized
according to their neighborhoods. Since we have dimension
p = 6, we reduce the dimensionality to the first two eigenvectors
v1 and v2 of the global MCD correlation matrix T, which is
displayed at the upper left corner, hoping to depict most of the
relevant variance. Moreover, a biplot of T is added at the right
hand side to link the correlation matrices to our weather data.

Applying all four outlier detection methods leads to 24 obser-
vations in total classified as outliers. The most outliers (21)

are classified by the method of Ernst and Haesbroeck (2016),
the least (3) by Filzmoser, Ruiz-Gazen, and Thomas-Agnan
(2013), which is consistent with the simulation results regard-
ing FPR and FNR, especially for the random fields setup. The
distances which are used for outlier detection for each method
and observation are shown in Figure 5. For further comparison
of the results, the upper part of Figure 6 shows all 24 classified
outliers with the corresponding ratio of distance value to cut-
off value. Ratios above one are outliers. We can see that there
are multiple weather stations that are classified as outliers only
by the method of Ernst and Haesbroeck (2016) which lends
itself to a notion consistent with the simulation results that
there are some false positives among these weather stations.
One example for a false positive could be panel b) in in the
lower part of Figure 6. The station Feuerkogel (panel a)) was not
detected by the method of Filzmoser, Ruiz-Gazen, and Thomas-
Agnan (2013), also consistent to the simulation results for the
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Figure 5. Distance-distance plots with the outlyingness scores of EH (next distance), of LOF (local outlier factor) and of F (isolation degree) against the next distance of the
ssMRCD-based method. Observations are separated into global outliers based on the robust MD with the MCD as covariance estimator. At the margins the distribution of
the different outlyingness scores are depicted by histograms.

Figure 6. Upper part: Weather stations classified as outliers colorized according to their outlyingness score in relation to the cut-off value (OC) for all four methods and
their global outlyingness. Lower part: in panels a)–d) four exemplary weather stations are selected to show differences on methodologies. Each variable is scaled to range
[0, 1]. The values of the selected outliers are emphasized against the corresponding 10 nearest weather stations.
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Figure 7. Altitude map of Austria with all weather stations and four selected outliers. Each dashed ellipse indicates the k nearest neighbors with whom the corresponding
outlier is compared.

random fields setup and the generally high FNR. Interestingly,
also LOF seems to have drawbacks and fails for example for the
weather station Patscherkofel (panel c)), which was not detected
as outlier. Nevertheless, the weather station Schoeckl (panel d))
was detected by all of them.

When looking at Figure 7 we can find some explanation for
the local outlyingness for two of the three local outlier stations
and why panel b) might not be outlying. While the stations
Schoeckl and Feuerkogel are rather exposed on higher altitudes
than most of the surrounding k-nearest stations which can easily
lead to different patterns regarding weather, the station Linz-
Stadt (panel b)) is in a rather flat area similar to its neigh-
bors. The station Patscherkofel is already deep in the Alpine
area and is surrounded by other stations in valleys but also on
mountains. Although from panel c) in Figure 6 it is evident that
Patscherkofel differs significantly in wind velocity, it is not clear
why it differs so much also from stations with similar altitude
and exposure.

6. Conclusions

In this article we enhance the limited toolbox for multivariate
local outlier detection by extending the approaches of Filzmoser,
Ruiz-Gazen, and Thomas-Agnan (2013), and Ernst and Haes-
broeck (2016). The developed ssMRCD based on the MRCD
(Boudt et al. 2020) bridges the gap between fully local and fully
global covariance matrices used in the pairwise MD by exchang-
ing the extremely local covariance matrices used in Ernst and
Haesbroeck (2016) with spatially smooth estimates.

We define the ssMRCD by means of a minimization problem
and prove theoretical properties of the estimator, such as
equivariance and breakdown point. A heuristic is provided
for the stable convergence property of the proposed algorithm
under reasonable spatial changes in underlying covariance
matrices. Moreover, the methods of Filzmoser, Ruiz-Gazen,
and Thomas-Agnan (2013), Ernst and Haesbroeck (2016), and
the ssMRCD outlier detection method are compared with the
local outlier factor adapted for local outliers (Schubert, Zimek,
and Kriegel 2012) regarding outlier detection performance and

computational efficiency for simulated data and real world data
from Austrian weather stations.

While we support the conclusion of Ernst and Haesbroeck
(2016) that it is difficult to select the “best” method for out-
lier detection techniques, the ssMRCD-based outlier detection
technique seems to be the only method providing reliable (but
still improvable) results over all analyzed simulation scenarios.
Note, that there might be non-analyzed scenarios where the
ssMRCD-based outlier detection technique is not performing
satisfactorily enough. Additionally, it is able to compete with the
other methods regarding runtime even though the computation
is quite complex. However, for a thorough real data analysis it
is still preferable to use different outlier detection methods and
compare the results in order to exploit all possible advantages of
the available methods. Comparing results of multiple method-
ologies provides more insight in the data and significant local
outliers can be classified with more reliability overall.

The ssMRCD covariance structure can be exploited also
beyond local outlier detection. All covariance based methods
that are sensible to adapt to spatial data can be extended by using
the ssMRCD instead, for example spatial principal component
analysis. A special case for the application of the ssMRCD
might also be spatial data with structural breaks that need
to be considered in the analysis. Finally, the presented ideas
could also be transferred to a time series context, where the
spatial dependency is replaced by the temporal dependency of
multivariate time series, and the dependence structure could
change over time. Such settings are usually quite challenging for
outlier detection.

Supplementary Materials

R-Code: All code for reproducing results shown in the article. For further
information we refer to the readme.txt file (supplements.zip).

Proof of theorems Proofs for Theorems 1–5.
C-step and convergence Convergence analysis of C-steps in the algo-

rithm.
Runtime analysis Runtime of covariance estimation and local outlier

detection methods.
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Parameter sensitivity Sensitivity analysis for ssMRCD-based local outlier
detection.

Outlier detection analysis Further analysis using the switching procedure
by Ernst and Haesbroeck (2016).
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