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A B S T R A C T   

In exploration geochemistry, mineral deposits are typically characterised by an enrichment of the targeted el-
ements, and thus their element composition differs from that of samples in a local neighbourhood. Local outlier 
detection methods aim at identifying local changes. In contrast to conventional outlier detection procedures, 
local outlier detection methods are multivariate methods for outlier identification that incorporate the spatial 
neighbourhood of the samples. It is essential that geochemical data are treated as compositional data, and the 
requirements for their treatment depend on the specific local outlier detection method. We demonstrate how 
prominent local outlier detection methods can be used for mineral exploration with geochemical data that vary 
in scale, in the sampling density, and in data quality. The methods are compared based on known mineralisa-
tions, and recommendations for their usefulness are provided.   

1. Introduction 

Detecting multivariate outliers is one of the most important steps 
when analysing any kind of data. Such outliers could arise from gross 
errors during data recording, they could be the result of inappropriate 
data preprocessing, or they could indicate observations which are 
indeed very different from the rest and thus point at unusual phenomena 
(Zimek and Filzmoser, 2018). The problem of outlier detection becomes 
more difficult when analysing data with additional attributes that need 
to be considered, such as the locations of observations in a spatial data 
setting. Here, we are often not interested in the outliers found with 
standard methods (so-called global outliers) but we focus on observations 
that are anomalous with respect to their spatial surrounding. These 
observations are called local outliers, and they could indicate interesting 
locations to practitioners, e.g., unknown mineral deposits. On the other 
hand, methods which use locality (for example geographically weighted 
methods (e.g. Brunsdon et al., 1998) or geostatistical techniques (see e. 
g. Cressie, 2015) can also be heavily influenced by local outliers. 

While the literature for local outlier detection is not as broad as for 
global outlier detection, there are still some (multivariate) methods 
available. We will focus on three methods based on the pairwise 

Mahalanobis distance (see Filzmoser et al., 2013; Puchhammer and 
Filzmoser, 2023a) defined as 

MDΣ(x, y) =
[
(x − y)tΣ− 1(x − y)

]1/2 for y ∈ A(x)

for two (multivariate) observations x, y with a robust covariance esti-
mate Σ which can depend on the spatial attributes of x and y. The set- 
valued function A(x) returns observations that are spatially close to an 
observation x. The three methods differ in their covariance estimation, 
specifically in the degree of its locality. The fourth method comes from 
the area of machine learning and is solely distance-based. All of the four 
methods compare each observation with its k-nearest neighbours (A(x)
returns the k-nearest spatial neighbours) and calculate a degree of out-
lyingness that together with a method-specific cutoff value flag obser-
vations as outliers. 

The first method introduced by Filzmoser et al. (2013), in the 
following called robust local outlier detection method (ROB), is available in 
the R-package mvoutlier (Filzmoser and Gschwandtner, 2012) and uses 
the pairwise Mahalanobis distances together with a global and robustly 
estimated covariance matrix, ignoring the spatial context of the data. 
The measure of outlyingness for each observation is based on theoretical 
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properties connected to χ2-quantiles. For more details we refer to the 
respective paper by Filzmoser et al. (2013). In contrast, the method of 
Ernst and Haesbroeck (2016), here called regularised spatial detection 
technique (REG), estimates local covariance matrices based on the k- 
nearest spatial neighbours for each observation separately. Thus, for a 
fixed observation x, the covariance estimation is only based on obser-
vations in A(x). The measure of outlyingness (also called next-distance) 
is just the minimum of all MD, miny∈A(x)MD(x, y) of each observation x, 
and the final cutoff value to determine outlyingness is the upper fence of 
an adjusted boxplot based on all next-distances. Next-distances above 
the cutoff value indicate local outliers. As a compromise between using 
only one covariance estimation and using a covariance estimation for 
the local neighbourhood of each observation individually, the third 
method of Puchhammer and Filzmoser (2023a) is bridging the gap by 
partitioning the space into groups (e.g. by country boundaries for so-
cioeconomic data, or via grids or clustering for data without known clear 
grouping) and estimating a covariance matrix for each group using the 
so-called ssMRCD estimator implemented in the R package ssMRCD 
(Puchhammer and Filzmoser, 2023b). The concept of next-distances 
from REG is also applied here to identify outliers. Simulation studies 
in Puchhammer and Filzmoser (2023a) show that the method ROB tends 
to have an increased false negative rate since the global covariance 
matrix seems to not being strict enough in its estimation of the local 
covariance. The method REG leads to an increased false positive rate, 
because using only the k-nearest neighbours for the covariance estima-
tion seems to be too strict by not putting the local estimation into the 
global perspective. Outlier detection based on ssMRCD includes some 
spatial smoothing among spatially close groups, and thus the broader 
structure is also taken into account which balances the false positive and 
false negative rate. 

The last considered method for local outlier detection is the local 
outlier factor (LOF) introduced by Breunig et al. (2000) and adapted to 
the spatial setting according to Schubert et al. (2012). Since the LOF is 
purely (Euclidean) distance-based and does not use the pairwise 
Mahalanobis distance, there is no need to estimate a covariance matrix. 
Instead, a local density based on the Euclidean distance in the feature 
space is calculated for each observation and compared with the density 
of its k-nearest spatial neighbours. Formally, the base of the LOF is the 
so-called reachability distance gk between two objects x and y which is 
defined by 

gk(x, y) = max{dk(x) , d(x, y) }

where d is the Euclidean distance and dk(x) the (Euclidean) distance of x 
to its k-nearest neighbour. The density used, also called the local 
reachability density, is defined by 

lrdk(x) =

⎛

⎜
⎝

∑

y∈Ak(x)
gk(x, y)

|Ak(x)|

⎞

⎟
⎠

− 1  

with Ak(x) being the spatial k-nearest neighbours. If the density of an 
observation is considerably lower than the density of its neighbours, 
measured by a local outlier factor 

LOFk(x) =

∑

y∈Ak(x)

lrdk(y)
lrdk(x)

|Ak(x)|

bigger than 1, the observation is considered a local outlier. The original 
LOF method of Breunig et al. (2000) is implemented in the R package 
DescTools (see Signorell, 2017). 

Finding these local outliers is quite important for mineral exploration 
especially in the context of geochemical data. Though there are a 
number of methods such as geological mapping, geochemistry, 
geophysical surveys and remote sensed imagery that are used in mineral 
exploration to find potential areas for mineral deposits (Marjoribanks, 

2010), in this paper, we are focusing on a geochemical approach in 
connection with local outlier detection. In the areas having transported 
cover, such as glaciated terrains, mineral deposits are typically found as 
sub-outcropping under till-cover. In addition, many ore deposits locate 
buried under the bedrock surface or even hundreds of meters depth in 
the bedrock without outcrop on the surface. That type of buried deposits 
are challenging for the mineral exploration due to poor recognition with 
surface techniques. However, geochemical data of till and bedrock may 
provide good targeting criteria for identifying both sub-outcropping and 
buried mineral deposits. Local outliers reveal anomalous data points 
which highly deviate from the surrounding data variability in 
geochemical data sets and may be indicators for mineral deposits in 
geochemical explorations (Filzmoser, 2004). Thus, geochemical anom-
aly detection in general is crucial for exploring unknown mineral de-
posits, and applying local outlier detection techniques in particular can 
be beneficial in achieving this goal. The type of geochemical data (i.e. 
elements) that should be used to identify outliers and then predict 
possible deposits may depend on the type of targeted mineral deposit. 
When detecting Ni - Cu deposits, as an example, outliers can be associate 
with high Ni, Cu, PGE, Ti, V, S, Cr and Co (Maier, 2015). 

In this context, also certain relations of element concentrations are 
often very insightful. This is connected to the compositional nature of 
element concentrations which is an essential aspect and needs to be 
addressed by any method when applied to geochemical data. While the 
assumption of a normal distribution seems valid for many measure-
ments, the underlying distribution of geochemical data has an inert 
structure that must not be ignored. Since geochemical measurements 
(also called analytical results) constitute a composition of elements, the 
sum of the concentrations or parts of each sample is fixed to the same 
number. Thus, the underlying geometry of the data is not the Euclidean 
but the Aitchison geometry (Pawlowsky-Glahn et al., 2015) and the 
relevant information is not in the absolute values but in the pairwise 
(logarithmic) ratios of the parts. Although this geometry seems 
complicated, many methods can be applied after appropriately trans-
forming the compositional data to the Euclidean geometry while addi-
tionally taking the original structure (i.e. the simplex) or the pairwise 
(logarithmic) ratios of the parts into account for interpretation. 

There are various transformations suited for this task (see, e.g., 
Filzmoser et al., 2018). We will focus on two of them that are easy to 
apply and have good theoretical properties. The first transformation 
leads to the so-called centered-logratio (clr) coefficients. For a composi-
tion x = (x1,…, xD), the clr transformation is defined as 

clr(x) =

⎛

⎜
⎜
⎜
⎜
⎝

ln
x1
̅̅̅̅̅̅̅̅̅̅̅
∏D

k=1
xk

D

√ ,…, ln
xD
̅̅̅̅̅̅̅̅̅̅̅
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k=1
xk

D

√

⎞

⎟
⎟
⎟
⎟
⎠
, (1)  

which is essentially the logarithm (per variable) of the observed 
composition standardised by its geometric mean. The clr-transformation 
is isometric, meaning that it preserves the distance of the Aitchison 
geometry when using the Euclidean distance in the transformed space. 
Also, the interpretation is desirably straightforward and based on rela-
tive information with respect to the (geometric) mean. However, a 
drawback present in many applications is that the transformed data 
matrix does not have full rank since clr coefficients are based on a 
generating system and not on a basis of the Aitchison geometry. This can 
be overcome by using one of infinitely many orthonormal coordinates. 
The transformation of choice in this paper is based on isometric logratio 
(ilr) coordinates and known under the name pivot coordinates (e.g. 
Filzmoser et al., 2018). The j-th entry of the pivot coordinates of x is 
defined as 
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ilr(x)j =
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(2)  

for j = 1,…,D − 1. Since an orthonormal basis is used, we reduce the 
dimension of the transformed composition by one and resolve the 
problem of singularity in general present for the clr-transformation. Up 
to a constant we have equality in the first entry of the ilr and clr 
transformation, ilr(x)1∝clr(x)1, and thus, the first entry of ilr coordinates 
can be interpreted just as easily as the clr-transformation. Note that 
although there is a close connection between the first coordinates, it 
should be kept in mind that ilr coordinates represent dominance while 
clr indicates the average of a composition. However, this close rela-
tionship does not apply to the other coordinates of the ilr-transformed 
composition which is essentially the one major disadvantage of the 
orthonormal basis. We will use both transformations according to their 
properties, and choose the transformation based on the questions and 
requirements arising in our data analysis. 

In this paper we analyse geochemical data by applying local outlier 
detection techniques to three data sets differing in scale and data qual-
ity. We show the importance of data preprocessing steps and the usage of 
compositional data analysis methods, describe the problems encoun-
tered with data having insufficient quality and debate possible solutions 
that adequately account for the compositional nature. Moreover, we 
show how different local outlier detection techniques perform on 
different scales and analyse in which cases some methods might be less 
appropriate to find mineral deposits. Some ideas on outlier diagnostics, 
method evaluation, and filtering of outliers based on common compo-
sitional data transformations are also discussed to complete a thorough 
local outlier analysis in the compositional data setting. 

The paper is organised as follows. In Section 2 we describe the three 
data sets and corresponding preprocessing steps before applying the four 
local outlier detection methods in Section 3. The final two sections 
summarise and discuss the findings and provide overall conclusions. 

2. Data description and preprocessing 

For illustration purposes we choose three data sets differing in spatial 
scale, sampling scale and data quality to showcase the differences and 

specifics of the four selected outlier detection methods. The locations of 
the samples of the different data sets are depicted in Fig. 1. 

The first data set is the so-called GEMAS data set described in 
Reimann et al. (2014a, 2014b). The data consists of agricultural soil 
samples that cover most of Europe in a density of 1 sample per 2500 
km2, see Fig. 1 left. The 2108 samples were analysed by X-ray fluores-
cence, following tight quality control procedures, resulting in concen-
tration values for 41 chemical elements. Here we use the data set 
published in the R-package robCompositions (see Templ et al., 2011), 
named as data set gemas. It contains only elements with less than 3 % of 
the analytical results below the detection limit, resulting in 18 main 
elements with good data quality. 

The other two data sets are used for till geochemical analysis 
(regional till geochemistry, targeting till geochemistry and mineral de-
posits) in Finland. They are provided by the Geological Survey of 
Finland (1995, 2013, 2016) (GTK) and modified as described below. The 
regional till data set covers whole Finland and it has been collected 
during the period of 1983 to 1991. This data set contains the concen-
trations of 22–26 elements (depending on the map sheet – in the selected 
area we have 22 elements available), see Table 1. The samples have been 
collected from the C horizon, which contains unaltered till. The sam-
pling depth is approximately 1.5–2 m. The sampling density is 1 sample 
per 4 km2 and the full data set comprises of 82,062 samples. Further-
more, concentrations of 22–26 elements that can be extracted by aqua 
regia have been analysed for fine fraction of the till material less than 
0.06 mm and the data has been published by 1:400,000 map sheets 
(Salminen and Tarvainen, 1995). 

The final data set, the targeting till geochemical data set, contains 
around 385,000 soil samples collected by GTK along sample lines in 
certain areas between the years from 1971 to 1983. Most of them are till 
samples, however samples from sorted mineral soils, weathered bedrock 
and mixed intermediate forms also exist in the data set. In this paper, 
only till samples collected using percussion drilling and test pitting 
methods from the C horizon which contain fine (less than 0.06 mm) 
fractions are considered. The samples have been collected by 1:100,000 
map sheets. The point density of the samples lies between 6 and 12 
samples per 1 km2 where the line interval is 500–2000 m and the dis-
tance between two points is 100–400 m. The average depth of the 
samples is 2 m, and an emission quantometer method has been used to 
measure the concentration of 17 elements listed in Table 1 (Gustavsson 
et al., 1979). 

Area of data
set 2 and 3
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Fig. 1. Map of research areas. Left: Grey crosses indicate sample locations of the GEMAS project while the black dots represent the reference sites of the SEMACRET 
Project (2023). The rectangle in the Northern part of Finland represents the four selected map sheets of the regional and targeting till data set shown on the right. 
Right: Sample locations of regional till (black crosses) and targeting till (grey dots) data, partitioned into four map sheets. Each triangle indicates a known min-
eral deposits. 
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For the data analysis in Section 3 we do not use the complete regional 
and targeting till data sets, but choose data subsets covering only the 
area from Central Lapland depicted in Fig. 1 (right), which is partitioned 
into four smaller areas or map sheets by GTK. This area contains many 
known mineral deposits and provides sufficient data quality in terms of 
enough reliable measurements, which is not provided in all areas for the 
targeting till data set. By taking the same sampling area for these two 
data sets, we are also able to compare their usefulness for mineral 
exploration with local outlier detection methods. 

2.1. Data preprocessing 

The element selection based on the detection limit threshold of 3% 
for the GEMAS data set constitutes a compromise between rejecting too 
many elements, and keeping too many elements with low data quality. 
Removing said elements ensures that most of the reliable information of 
this data set is extracted. Due to the high data quality in general, no 
further preprocessing is necessary. 

The selected subset of the regional till data set generally has good 
data quality. However, for some elements it contains values below the 
lower detection limit, and other data quality issues. Therefore, addi-
tional data cleaning is required. The right part of Table 1 shows the 
percentages of values with the data problems mentioned before for the 
selected 4 map sheets. We decided to exclude Zr and Th for all further 
analyses. The remaining data quality issues are not connected to 
detection limit problems, since only Zr and Th where erroneous in this 
way. A small amount of analytical results have additional markers in the 
data with unclear encoding. The benefit of the additional information 
saved trough this procedure outweigh possible negative effects on data 
analysis and the differently marked analytical results are kept in the 
data. We refer to Mert et al. (2016) for an analysis of contamination on 
compositional data transformations. The resulting regional till data set 
has thus 870 samples and 20 variables. 

Compared to the previous data sets, the targeting till geochemical 
data set has serious data quality issues, typically connected to values 
related to detection limits, zero and even negative analytical results, and 
values marked with special symbols. Therefore, extensive data cleaning 

is required in order to perform further statistical analyses and modelling 
procedures. The percentages of insufficient quality of samples per 
element and map sheet areas are calculated and shown in Table 1 left. 
Eventually, elements which contain more than 30 % of problematic 
samples over all map sheets (e.g., Ag, Pb and Zn) are removed from all 
further analyses. 

Furthermore, the geochemical analysis of the targeting till data set 
has been carried out at different times and map sheets. Therefore, it is 
necessary to analyse a possible mismatch and if the measurements are 
comparable. Fig. 2 illustrates the spatial concentration of Fe in both till 
data sets separately. It is evident that there are discontinuities at the map 
sheet boundaries in the targeting till data set due to inconsistencies 
during the geochemical analysis done by quantometer method. These 
discontinuities are not present in the regional till data, where there is a 
change of geological units from Archean and Proterozoic to only Pro-
terozoic origin visible. Thus, after displaying clearly visible map sheet 
boundaries and discrepancies between map sheets at least for Fe that are 
not due to the underlying geology it was decided to analyse the map 
sheets (1:100,000 scale) separately for the targeting till data set, as the 
smaller areas also contain enough sample points to carry out the 
analysis. 

To improve data cleaning further, also Q-Q plots are used to examine 
the distribution of concentrations between different map sheets in the 
regional as well as in the targeting till data set where only elements with 
less than 30% of quality issues are included. For the Q-Q plots, we focus 
on the elements Co, Cr, Cu, Fe, Ni, V, and Ti, which are important ore 
metals in ultramafic rocks, and thus of special interest for mineral 
exploration. As example, the concentration values of Fe for all four map 
sheets separately are shown by Q-Q plots for the targeting till data set in 
Fig. 3(a) and for the regional till data set in Fig. 3(c) as well as the 
corresponding clr transformed values in Fig. 3(b) and in Fig. 3(d), 
respectively. The Q-Q plots for Fe vary between map sheets (M4, M5, 
M11, M12) but especially between the two data sets. With respect to the 
average concentration level per map sheet we even see adverse ordering 
in original as well as clr transformed values for regional and targeting 
till, which is congruent with Fig. 2. Note that Q-Q plots alone are not 
sufficient to diagnose map sheet levelling problems but the adverse 

Table 1 
Percentages of problematic data quality of the targeting till and regional till data set for different elements with respect to corresponding map sheets. The values of the 
elements per map sheet used after the final data cleaning are underlined.  

Element Targeting till (%) Regional till (%) 

M4 M5 M11 M12 M4 M5 M11 M12 

Ag 100 100 100 100 – – – – 
Al 91.17 93.84 4.64 16.63 0 0 0 0 
Ba – – – – 0 0 0 0 
Ca 1.13 2.02 27.09 53.87 0 0 0 0 
Co 16.27 18.52 3.04 8.24 0 0 0 0 
Cr 86.65 6.82 6.33 4.16 0 0 0 0 
Cu 1.27 4.39 0.96 1.93 0 0.36 0 0 
Fe 0.03 0.87 0.73 1.80 0 0 0 0 
K 1.96 3.44 35.66 9.60 0 8.02 0 0 
La – – – – 0 0 0 0 
Li – – – – 0 0 0 0 
Mg 0.03 0.06 0.01 0.03 0 0 0 0 
Mn 2.17 1.14 2.71 2.74 0 0 0 0 
Na 0.37 0.40 15.90 4.38 – – – – 
Ni 0.24 0.33 0.18 0.46 0 1.45 0 0 
P – – – – 0 0 0 0 
Pb 99.58 91.95 97.35 97.71 – – – – 
Sc – – – – 0 0 0 0 
Si 0 0.47 0.01 0.07 – – – – 
Sr – – – – 0 0 0 0 
Th – – – – 5.88 15.32 9.52 1.92 
Ti 0 0.27 0.01 0.01 0 0 0 0 
V 0.27 0.94 1.03 3.72 0 0 0 0 
Y – – – – 0 0 0 0 
Zn 98 22.04 91.48 60.58 0 0 0 0 
Zr – – – – 11.02 7.66 36.90 44.87  
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ordering could still be a strong indicator of them. However, other 
quantitative differences between the two data sets might be mainly due 
to different analytical techniques. Interestingly, the clr transformation 
based in the regional till data set reorders the average relative level of Fe 
between map sheet M4 and M12 indicating that using the appropriate 
compositional data structure adds important information which would 
be ignored otherwise. Regarding differences between the map sheets per 
data set for other elements (Co, Cr, Cu, Ni, V, and Ti) shown in Appendix 
A it is less clear whether they originate from map sheet problems or from 

spatially changing lithology. Finally, the distributions of elements for all 
map sheets, elements and data sets seem to be plausible. Apart from 
some lower detection limit problems in the targeting till data set, which 
will be taken care of in the next step, we do not need to account for any 
extensive rounding, grouping or other distributional issues that might 
occur. 

After the extensive map sheet analysis of the targeting till, the final 
data cleaning is necessarily done per map sheet. In order to use as many 
elements as possible, we start by removing samples that have at least one 

Fig. 2. Illustration of discontinuities of Fe (%) between map sheets in the targeting till (right) compared to regional till data set (left). Clear boundaries are visible 
between the map sheets in the targeting till data set. 

Fig. 3. Q-Q plots of Fe: (a) original concentration in targeting till, (b) clr transformed concentration in targeting till, (c) original concentration in regional till, (d) clr 
transformed concentration in regional till, n (targeting till) = 16,460, n (regional till) = 870. 
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zero value of element concentration. Also observations with more than 
30% of problematic values over all elements provide a restricted amount 
of reliable information and are removed. Due to the high sample density, 
we still keep enough observations to make sensible analysis when 
applying the rather strict row cleaning (M4: 2417 samples, M5: 1399 
samples, M11: 5821 samples, M12: 4557 samples). Note, that for data 
sets of lower sample density, the decision between having less samples 
or less elements available after data cleaning is less clear than in this 
case. Finally, only the elements that have less than 5% problematic 
values per map sheet are used, which are underlined in Table 1. This is 
again rather strict, but we hope to reduce the number of local outliers 
connected to poor data quality or detection limit problems. Imposing the 
even stricter limit of 3% similar to the GEMAS data set is not applicable 
for this data set, since many more elements would be lost for the anal-
ysis. However, note that the effects of some data quality issues on 
compositional transformations will be present but limited (Mert et al., 
2016). 

After the final data cleaning of both data sets, targeting and regional 
till, the last preprocessing step is to address the compositional nature of 
the geochemical data (for targeting till again per map sheet). Although 
the clr-transformation is isometric regarding the Aitchison geometry and 
easy to interpret, the linear dependency introduced is problematic. In 
the case of covariance estimation we would get a singular matrix which 
is not invertible. However, this is a necessity for the pairwise Mahala-
nobis distance and the three methods based on it. Thus, it is sensible to 
choose ilr coordinates for the regularised spatial outlier detection 
technique, the robust local outlier detection method and the ssMRCD- 
based outlier detection technique to avoid this problem. Since LOF 
does not need a covariance estimation and is strictly (Euclidean) 
distance-based, any transformation for compositional data which is 
isometric can be applied. Thus, both ilr and clr can be used, and due to 
isometry both lead to the same local outlier factor and thus, to the same 
local outliers. 

3. Data analysis 

After finishing the preprocessing and data cleaning steps and the 
compositional data transformations, the four outlier detection methods 
can be applied to the transformed data. Regarding the parameters, we 
generally adhere to default settings wherever sensible. For all four 
methods we compare each observation with the same amount of k 
nearest neighbours. Setting k influences the locality of the local outlier 
detection in all methods since we are looking for an anomaly compared 
to samples from a larger area. For a more detailed analysis of the effects 
of different k values we refer to Braus (2023). Since the considered data 
sets differ in sample size and density, k is adjusted to the data sets. The 
parameters for the ssMRCD-based method are a smoothing parameter 
λ = 0.5, representing a compromise between local and global covari-
ance estimation. Neighbourhoods are defined data specific and the 
weighting matrix for smoothing between neighbourhoods is defined as 
the pairwise inverse distance of the neighbourhood spatial centres, 
which is the most natural choice for data without inherent spatial 
structural breaks. For LOF a value above 1.5 is flagged as outlying, and 
for the regularised spatial detection technique we want to include all 
observations (βREG = 1) independent of local heterogeneity. As regu-
larised covariance estimator, the Minimum Regularised Covariance 
Determinant estimator (Boudt et al., 2020) with a trimming percentage 
α = 75% is chosen, meaning that 75% of the k-nearest neighbours are 
used for the local covariance estimation. Regarding ROB, all other pa-
rameters including the amount of neighbours allowed to be similar as 
well as the cutoff value are adjusted to the spatial scale of the data. 

3.1. GEMAS data 

For the GEMAS data set we use the following parameter setting for 
the different local outlier detection methods: We choose k = 10 for all 

methods, a standard settings, and N = 50 neighbourhoods for the 
ssMRCD estimation which reflects an appropriate level of locality given 
the sample density and ensures sufficient observations per neighbour-
hood. The neighbourhoods are selected by k-means clustering based 
only on the spatial attributes of the data and checked for reasonably 
sized spatial clusters. For the robust local outlier detection method 
(ROB) we allow 10% of the neighbours to be similar (βROB = 0.1) due to 
the large area covered and the sparse sampling of the GEMAS data set, 
and choose an isolation degree bigger than 0.2 as cutoff value. These 
parameter choices are also supported by the work of Braus (2023). As 
some indicator for performance we also include the reference sites of the 
SEMACRET Project (2023) in Fig. 1 (left). Finding these reference sites 
can be interpreted as analysis goals. However, on the one hand this 
approach is unbalanced since a high number of found outliers already 
leads to an improved performance, and on the other hand unknown 
mineral deposits are not taken into account. Nevertheless, we get more 
insight into possible drawbacks of different methods. 

The flagged outliers per method are shown in Fig. 4. Starting with the 
most global method, the robust local outlier detection method (ROB), 
problems connected to the global covariance estimation are evident. For 
the robust covariance estimation, the MCD estimator (Rousseeuw, 1985) 
is used which selects a subsample of the data with the lowest determi-
nant of the sample covariance based on this subsample. On the GEMAS 
data set, the subsample contains mainly observations from Middle to 
Northern European countries, thus leading to a covariance not repre-
senting Southern Europe and to an unbalanced and somewhat biased 
spatial distribution of the outliers. For the regularised local outlier 
detection technique (REG), the outliers are more or less evenly distrib-
uted. However, the problem of a high number (almost 15% of the ob-
servations) of outliers arises which is likely connected to an increased 
false positive rate. The high amount of outliers makes it difficult to get 
more valuable insight into the data rendering the method essentially 
useless without further processing. Both, the ssMRCD-based and the 
LOF-based outlier detection method seem promising, however it seems 
that the ssMRCD finds most reference sites, including a strong signal 
very close to the ultra-mafic intrusion body in Beja (see Fig. 5b). Note 
that the mineral deposit in Suwalki in North Poland is assumed to be 
multiple hundreds of metres deep under the surface, so it is unlikely that 
it affects the soil sufficiently. Moreover, LOF does not flag the soil 
sample from the Canary Islands as outlying which would be sensible 
given that the ten nearest neighbours are located far away somewhere in 
South Spain. 

Although the element selection in the GEMAS data set might not be 
oriented towards mineral exploration, the data quality is very good and 
it is well suited to discuss further processing steps. After applying the 
four methods we end up with many potential locations for mineralisa-
tion or other anomalous observations. Thus, a closer look at the iden-
tified outliers is quite important since finding mineralised areas can be 
very expensive, and additional analysis can improve the identification of 
important locations. We are interested in utilising potential minerali-
sations by mining, hence high values of elements in clr coordinates 
(meaning high concentrations relative to other elements) but also in 
total concentrations are desirable. Thus, we employ a filtering procedure 
on all flagged outliers keeping only those observations which have clr 
and measured concentration levels simultaneously above the global 95% 
quantile for at least one element. In Table 2 the total numbers of outliers, 
filtered and unfiltered, are shown for all three data sets. Depending on 
geological knowledge and the type of mineral deposits that should be 
found, the selection of elements for the filtering procedure can be further 
specified in concrete applications. For finding potential Ni-Cu mineral-
isation, the elements in the filtering procedure can be tailored specif-
ically to high Ni and Cu and other connected elements (see also Section 
3.3). 

The number of outliers is reduced by the filtering procedure, but for 
single observations we can still improve on the analysis to increase the 
chance of finding valuable mineral deposits. A possible diagnostic tool is 
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based on parallel coordinate plots which can give insight into the 
multivariate structure. Each observation is represented by a line, and the 
values of each variable on the horizontal axis are connected. We focus on 
the comparison with the k-nearest neighbours. Together with insight 

into the underlying bedrock, the corresponding observation can be 
interpreted as interesting new target for further exploration or discarded 
as uninteresting anomaly. In Fig. 5a and b, two of the flagged outliers 
which are closest to the Akanvaara area and Beja are analysed in 

LOF REG ROB ssMRCD

Fig. 4. Spatial locations of flagged outliers (marked as cross) by each method separately on the GEMAS data set. The black dots represent areas of interest in the 
SEMACRET Project (2023) where mineral deposits are anticipated. 
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Fig. 5. Outlier diagnostics for (a) observation 530 which is closest to the Akanvaara area, and for (b) observation 189, closest to the ultra-mafic intrusion body in 
Beja, each colourised in red. The two parallel coordinate plots show the multivariate structure of the observations and corresponding 10 nearest neighbours in grey, 
once in percent (upper part) and once in clr-transformed values (lower part). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Table 2 
Number of flagged outliers for each method and data set, unfiltered and filtered by high values in clr values and non-transformed measurements in at least one element.  

Method Unfiltered Filtered 

GEMAS Regional Targeting GEMAS Regional Targeting 

LOF  36  17  420 24 15 359 
REG  311  115  943 182 59 640 
ROB  66  13  595 28 5 167 
ssMRCD  64  26  431 48 21 379 
# samples  2108  870  14,194 – – –  
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comparison to their 10 nearest neighbours (coloured in grey) using the 
parallel coordinate plot. 

Regarding the outlier next to Beja in Portugal, which was flagged 
only by the ssMRCD-based method, we see high values in Ca and Mg and 
particularly low values in K. This fits well to the known geology in this 
region. While the neighbours are mostly located on sand (3 samples) and 
on the South-Portuguese Flysch zones (4–5 samples) which are 
composed of higher Al, Si, Fe, K as well as hardly any Ca and Mg (Jorge 
et al., 2013), respectively, the flagged outlier lies on the layered 
Gabbroic Sequence at Beja which is consistent with the elemental 
composition of the outlier as it contains olivine bearing gabbroic rocks 
which are bordered by heterogeneous diorites (Jesus et al., 2014). 
Gabbro usually contains minerals which associate with Ca and Mg such 
as pyroxene, plagioclase, and olivine of which weathering release Ca 
and Mg. The depicted high values in Ca and Mg are thus indicators for 
the Caliche type of weathering, which is typical in that type of climate 
for (ultra-)mafic lithologies. Also, low Si and slightly higher Cr with 
respect to neighbours indicate weathering of gabbroic rocks. 

For the outlier indicated by the methods LOF, REG and ssMRCD near 
the Akanvaara deposit and the so-called Koitelainen deposit north- 
western of Akanvaara, higher values can be observed for Fe and Mn 
with respect to the nearest neighbours (Fig. 5a). The Akanvaara deposit 
is located in Northern Finland (eastern part of the Central Lapland 
greenstone belt) and it is considered as a layered mafic intrusion which 
hosts vanadium mineralisation in layers of magnetite gabbro and also in 
chromitite layers within gabbro. These two layers have been mineralised 
by massive, semi-massive and disseminated magnetite, pyrite, chalco-
pyrite and chromite (Lutynski, 2019). Koitelainen also an ultramafic 
deposit which is enriched by commodities such as Cr2O3, V, Fe and PGE. 
The flagged outlier is closer to the Koitelainen deposit than the Akan-
vaara deposit where the distances from the outlier to the deposits are 
approximately 17 km and 72 km respectively. Thus, when considering 
the flagged outlier for these deposits, elevated amounts of elements such 
as Cr, V, Cu are also expected other than Fe in order to identify it as an 
indicator for Akanvaara and Koitelainen. However, the GEMAS data are 
for grassland areas and Akanvaara locates inside largely forested area 
without close vicinity to grasslands. Furthemore, since this flagged 
outlier associates with only high Fe and Mn, it cannot be 100 % certain 
that it indicates the Akanvaara or Koitelainen deposits, but it is certain 
that it indicates a mafic environment where there is a possibility for a 
mineral deposit. 

3.2. Regional till data 

For the regional till data set some parameter settings are adjusted. 
We again compare single observations with their k = 10 nearest 
neighbours. For the ssMRCD-based method, each of the 4 map sheets is 
chosen as an own neighbourhood. This choice is due to the very dense 
sampling grid, but simulations in Puchhammer and Filzmoser (2023a) 
also suggest that the method is rather insensitive to the number of 
neighbours, as long as some smoothing by the parameter λ is performed. 
For the robust local outlier detection method (ROB), we increase the 
percentage of neighbours allowed to be similar to 30% (βROB = 0.3) due 
to the smaller scale of the sampling area and choose an appropriate 
cutoff value for the isolation degree of 0.4. We refer to Braus (2023) for 
sensitivity analyses with respect to the choice of these parameters. 

Interestingly, due to the smaller scale of the data we have the 
advantage of known mineral deposits (Geological Survey of Finland, 
2016). There are 48 known mineral deposits of various types in the 
research area depicted as red rectangles in the right part of Fig. 1. 
Ideally, our methods find these locations. However, since generally 
there are no samples directly on the deposits, we define a deposit to be 
found if an outlier is located 4 km or closer to the deposit. This might 
seem like quite far, but for an average density of one sample per 4 km2 

and historical glacial movement this distance is quite reasonable. Note, 
that this is not a guarantee that the outlying sample detecting the deposit 

has a typical element composition connected to the specific deposit type. 
Hence, it might be possible, that the sample is outlying due to other 
processes. Moreover, it would be preferable if the methods find the 
deposits as the most extreme outliers. Thus, we rank the outliers ac-
cording to their outlyingness value, and analyse how many deposits are 
found until which outlier rank. 

The left part of Fig. 6 shows how many deposits are found by outliers 
up to the rank depicted on the horizontal axis for the regional till data 
set, with and without the filtering procedure described in the prior 
subsection. We see that filtering outliers reduces the number of outliers 
overall. However, for the regularised spatial outlier detection technique, 
the ssMRCD-based method and also the LOF there is an improvement in 
accuracy, meaning more deposits are found earlier. The degree of the 
improvement differs among methods, from strong for REG to negligible 
for LOF. Nevertheless, the filtering tool proves to be valuable if a sub-
selection of outliers is necessary. 

3.3. Targeting till data 

Finally, the targeting till data set is used for the analysis. As discussed 
in Section 2 it is most sensible to analyse the four map sheets separately. 
The data also provides a structure of smaller sub-mapsheets, 12 for M4 
and M5 and 6 for M11 and M12, respectively, that are used as neigh-
bourhood structure for the ssMRCD-based method. The only other 
parameter setting that is changed compared to the regional till data 
analysis is k, the number of neighbours to be compared with each 
observation. Due to the high sampling density, we increase k to 30 to 
find appropriate local outliers. Since we have 16 times more observa-
tions than in the regional till data set for the same area, the necessary 
distance to a known mineral deposit for it to be defined as found is 
reduced to 1 km in order to compare the performance of the data sets 
fairly. 

Due to the separation of the map sheets in the analysis and the fact 
that we have a different set of elements per map sheet, we cannot 
compare the degree of outlyingness without adjustments. Thus, for each 
map sheet the outlyingness is standardised with its cutoff value to 
reduce the effects of separate analysis, and then the observations is 
ranked jointly by the standardised outlyingness. 

The results can be seen in the right panel of Fig. 6, again with 
unfiltered and filtered outliers. The methods flag many samples as 
outlying and for ROB and REG filtering significantly reduces the number 
of outliers while increasing accuracy. Ideally, the curves would jump at 
the very beginning up towards the number of known deposits. We can 
see that the ssMRCD-based method is closest to the ideal, both with and 
without filtering of outliers. 

As mentioned before it is also possible to use a specific set of ele-
ments for filtering that match a deposit type of interest. As illustration 
we now try to find a (known) Ni-Cu deposit by filtering according to Ni, 
Cu, Ti, V, Co and Cr (see Section 1). Three of the four methods (LOF, 
REG, ssMRCD) flag the sample analysed in Fig. 7 as outlier, which is less 
than 1 km away from the Saattopora-Cu deposit hosting Cu together 
with Au, Ni, Co and Ag. High values in Ni, Ti and Co of the flagged 
sample imply that the Ni-Cu deposit is connected to its outlyingness. 

Comparing the results of the two data sets shown in Fig. 6, we can 
clearly see that significantly more mineral deposits are potentially found 
by less flagged outliers using the regional till data set. In the case of 
mineral exploration this is definitely desirable since each outlier would 
need to be analysed more closely. By providing that valuable outliers 
have high ranks in outlyingness, the effort and time spent on additional 
analysis is reduced. Note that outlier detection with the regional till data 
set might be more accurate than with the targeting till data set just 
because of the availability of more elements. This seems to be an 
important factor in finding certain types of ore deposits compared to a 
higher sampling density. 

Another interesting approach is to analyse if the (potentially) found 
mineral deposits are the same or if the data sets lead to different results. 
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Fig. 6. Performance of local outlier detection methods on regional (left) and targeting (right) till data for filtered and unfiltered flagged outliers. The dashed line 
represents the number of known mineral deposits. The methods applied to the regional till data set have better performance than for targeting till, as can be seen for 
the first 30 outliers (dotted line). 

Fig. 7. Outlier diagnostics for an outlier (red cross) close to the Saattopora-Cu deposit (right triangle). The two parallel coordinate plots show the multivariate 
structure of the observations and its corresponding 30 nearest neighbours in grey, once in percent (upper part) and once in clr-transformed values (lower part). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Found mineral deposits per outlier rank for unfiltered outliers (a) and filtered outliers (b) in either the regional and/or the targeting till data set. Jointly found 
deposits are marked by dots, deposits found only by one method are marked as grey crosses. 
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In Fig. 8 the outlier rank of the found deposits for both data sets are 
shown, for filtered and unfiltered outliers, and summarised in Table 3. In 
most cases, the number of found deposits is hardly affected by the 
filtering procedure. This indicates that the filtering process designed for 
subselecting outliers really leads to more accuracy in finding mineral 
deposits. Again, we can see that analysing outliers from the regional till 
data set is effectively detecting ore deposits since many of them are 
found with a much lower outlier rank. Interestingly, the ore deposits 
found differ between the data sets used. This reflects also the size and 
type of ore deposits which would mean that with sparse sampling grids 
bigger outcropping or sub-outcropping mineralisations are possibly 
found but with increased sampling density the detection of smaller sub- 
outcropping and buried deposits is improved. 

4. Summary and discussion 

In this paper we demonstrated the suitability of local outlier detec-
tion methods for the purpose of mineral exploration in geochemistry. 
Generally, local outlier detection incorporates the spatial neighbour-
hood of the samples in order to identify local anomalies in the multi-
variate element composition. The analysed data sets are of different 
scale, sample density and data quality, and they also vary in the number 
of available element concentrations. However, the geochemical data sets 
have in common that they are of compositional nature, which made it 
necessary to process them with tools from compositional data analysis. 

The different methods for multivariate local outlier detection mainly 
vary in the way how they estimate the covariance matrix to compute 
pairwise Mahalanobis distances. The simplest approach is to use a joint 
global covariance matrix. The other extreme is to use separate covari-
ance estimates for each local neighbourhood. A third, recently proposed 
methods tries to find a compromise between those two extremes, with 
the idea that the robust covariance estimation should change smoothly 
across the neighbourhoods. These methods are compared to a procedure 
called LOF (Local Outlier Factor), which incorporates Euclidean dis-
tances between the mutlivariate observations, and thus is based on a 
very different concept. 

While all methods find mineralisations, we have shown that they also 
have their limitations, ranging from biased covariance estimation to an 
extensive flagging of outliers and not finding reasonable spatial outliers. 
With known mineral deposits it is possible to evaluate the methodolo-
gies on real data and analyse their performance in more detail. However, 
the considered mineral deposits are of very different type, and one might 
have to go into much more detail to see if the compositions of the 
identified outliers really reflect the type of mineralisation, or if the el-
ements used in the analysis are even appropriate for this purpose. 
Moreover, it can also happen that some of the identified outliers point at 
new yet unknown mineralisations, which makes the evaluation used in 
this paper biased. 

Thus, next to appropriate outlier detection methods, it is also 
important to use diagnostic tools to verify if the indicated outliers indeed 
point at mineralisations. We introduced exploratory procedures that 
combine relative and absolute information, as outliers are supposed to 
be atypical in the multivariate compositional data space, but at the same 
time they are supposed to have high concentration values for particular 

elements. 
Next to a data subset from the GEMAS project we evaluated the 

procedures for two data sets from the same area in Finland, measured in 
different years, with a very different sampling density, and yielding 
different sets of elements with different data quality. The main question 
was if higher sampling density would also lead to higher accuracy for 
mineral identification. However, the crucial point for mineral identifi-
cation seems that not only the commodity elements need to be available, 
but also complementing elements that allow to understand and char-
acterise the geological situation. 

5. Conclusions 

A general but possibly obvious conclusion is that also for local outlier 
detection, data quality is more important than quantity. However, it is 
not just quality which matters, it is also the set of elements which needs 
to be big enough in order to cover the complexity of the geochemistry 
that experts would expect to find at mineralised zones. Here, rare ele-
ments such as gold could be very valuable, provided that they are 
measured with sufficient quality. Elements measured with low quality, 
as for example with a high proportion of values below the detection 
limit, will negatively affect the log-ratio transformations used in 
compositional data analysis. In more detail, an observation where just 
one element has a value below the detection limit could end up in a 
multivariate observation of the compositionally transformed data set 
with all entries being distorted. This could lead to a very high proportion 
of outliers, where local outlier detection methods could fail to work 
correctly. 

For the tested local outlier detection methods it is known that some 
are very sensitive and may lead to a too strict rule for indicating outliers. 
Also the way how the methods work internally is very different, and 
therefore these methods are flagging different sets of outliers. From a 
theoretical point of view, the ssMRCD method will be preferable over 
the methods REG and ROB in case where the investigated area shows 
geochemical differences, e.g. as a result of different underlying processes 
(pollution sources, soil formation, environmental conditions, etc.). The 
LOF method tends to identify data points that are isolated in the 
multivariate space. Thus, if the sampling is dense and the observations 
continuously change towards the mineralisation, this method may fail to 
see samples on top of mineralised zones as outliers. Nevertheless, a 
strategy could be to use multiple local outlier detection methods to 
balance their advantages and limitations. 

For sampling strategies it follows that a lower density with more 
analysed elements is desirable to high density sampling with low data 
quality. When interesting locations are found with sparse data, the 
density can then still be increased in further studies adjusted to the 
specific ore type and deposit size to also find smaller targets (for 
example, vein type or small sub-outcropping deposits). Nevertheless, 
statistical analysis alone is limited and always needs cooperation with 
experts providing interpretation of outliers and classifying them as po-
tential mineral deposits worth to be analysed further. 
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Table 3 
Number of found deposits for each method and data set, unfiltered and filtered 
by high values in clr values and non-transformed measurements in at least one 
element. Maximum number of deposits possible to find is 48.  

Method Unfiltered Filtered 

Regional Targeting Both Regional Targeting Both 

LOF  12  18  5  11  17  4 
REG  39  27  24  31  22  15 
ROB  2  18  1  1  9  1 
ssMRCD  17  19  7  15  18  6  
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Appendix A. Q-Q plots

Fig. A.1. Q-Q plots of Co: (a) original concentration in targeting till, (b) clr transformed concentration in targeting till, (c) original concentration in regional till, (d) 
clr transformed concentration in regional till.  
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Fig. A.2. Q-Q plots of Cr: (a) original concentration in targeting till, (b) clr transformed concentration in targeting till, (c) original concentration in regional till, (d) 
clr transformed concentration in regional till.  
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Fig. A.3. Q-Q plots of Cu: (a) original concentration in targeting till, (b) clr transformed concentration in targeting till, (c) original concentration in regional till, (d) 
clr transformed concentration in regional till.  
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Fig. A.4. Q-Q plots of Ni: (a) original concentration in targeting till, (b) clr transformed concentration in targeting till, (c) original concentration in regional till, (d) 
clr transformed concentration in regional till.  
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Fig. A.5. Q-Q plots of Ti: (a) original concentration in targeting till, (b) clr transformed concentration in targeting till, (c) original concentration in regional till, (d) 
clr transformed concentration in regional till.  
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Fig. A.6. Q-Q plots of V: (a) original concentration in targeting till, (b) clr transformed concentration in targeting till, (c) original concentration in regional till, (d) clr 
transformed concentration in regional till. 
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